Industrial Computed Radiography Market Size, Share & Trends Analysis Report By Component (Imaging Plates, Computed Radiography Reader (Digitizer) And Review Station With Acquisition Software) And Application (Aerospace And Defense, Automotive, Oil And Gas, Power And Energy, Security, Explosive Ordnance Disposal And An Improvised Explosive Device, Electronics And Semiconductors), Region And Segment Forecasts, 2024-2031

Report Id: 1819 Pages: 180 Last Updated: 06 August 2024 Format: PDF / PPT / Excel / Power BI
Share With : linkedin twitter facebook

Segmentation of Industrial Computed Radiography Market-

Industrial Computed Radiography Market By Application

  • Aerospace and Defense
    • Casting Manufacturing
    • Assembly
    • Maintenance, Repair, and Overhaul (MRO)
    • Weld Inspection
    • Foreign Object Detection (FOD)
  • Automotive
    • Automatic - Inline Integrated Solution (Robotics/Automatic)
    • Manual
  • Oil and Gas
    • Weld Inspection
    • Corrosion (Integrity)
    • Others (Valve Checks, Parts, and Flanges)
  • Power and Energy
    • Weld Inspection
    • Corrosion (Integrity)
    • Others (Valve Checks, Parts, and Flanges)
  • Security
    • Border Patrol
    • Travel (Airport or Government Buildings)
  • Explosive Ordnance Disposal and Improvised Explosive Device
    • Explosive Ordnance Disposal (EOD)/Weapons of Mass Destruction (WMD)
  • Electronics and Semiconductors
    • Automatic - Inline Integrated Solution (Robotics/Automatic)
    • Manual
  • Food and Drugs
    • Automatic - Inline Integrated Solution (Robotics/Automatic)
  • Transportation Infrastructure
    • Structural Integrity (Bridges)
  • Construction
    • Concrete
  • Marine
    • Casting Manufacturing
    • Assembly
    • Maintenance, Repair, and Overhaul (MRO)
    • Weld Inspection
  • Manufacturing
    • Automatic - Inline Integrated Solution (Robotics/Automatic)
    • Assembly
  • Heavy Industries
    • Automatic - Inline Integrated Solution (Robotics/Automatic)
  • Others
    • Railways
    • Pulp and Paper
    • Academic Research and Development
    • Mining
    • Archeological Investigations 

Industrial Computed Radiography Market By Component

  • Imaging Plates
  • Computed Radiography Reader (Digitizer)
  • Review Station with Acquisition Software

Industrial Computed Radiography Market By Region-

North America-

  • The US
  • Canada
  • Mexico

Europe-

  • Germany
  • The UK
  • France
  • Italy
  • Spain
  • Rest of Europe

Asia-Pacific-

  • China
  • Japan
  • India
  • South Korea
  • South East Asia
  • Rest of Asia Pacific

Latin America-

  • Brazil
  • Argentina
  • Rest of Latin America

 Middle East & Africa-

  • GCC Countries
  • South Africa
  • Rest of Middle East and Africa

Chapter 1. Methodology and Scope
1.1. Research Methodology
1.2. Research Scope & Assumptions

Chapter 2. Executive Summary

Chapter 3. Global Industrial Computed Radiography Market Snapshot

Chapter 4. Global Industrial Computed Radiography Market Variables, Trends & Scope
4.1. Market Segmentation & Scope
4.2. Drivers
4.3. Challenges
4.4. Trends
4.5. Investment and Funding Analysis
4.6. Industry Analysis – Porter’s Five Forces Analysis
4.7. Competitive Landscape & Market Share Analysis
4.8. Impact of Covid-19 Analysis

Chapter 5. Market Segmentation 1: by Component Estimates & Trend Analysis
5.1. by Component & Market Share, 2023 & 2031
5.2. Market Size (Value (US$ Mn) & Forecasts and Trend Analyses, 2019 to 2031 for the following by Component:

5.2.1. Imaging Plates
5.2.2. Computed Radiography Reader (Digitizer)
5.2.3. Review Station with Acquisition Software

Chapter 6. Market Segmentation 2: by Application Estimates & Trend Analysis
6.1. by Application & Market Share, 2023 & 2031
6.2. Market Size (Value (US$ Mn) & Forecasts and Trend Analyses, 2019 to 2031 for the following by Application:

6.2.1. Aerospace and Defense

6.2.1.1. Casting Manufacturing
6.2.1.2. Assembly
6.2.1.3. Maintenance, Repair, and Overhaul (MRO)
6.2.1.4. Weld Inspection
6.2.1.5. Foreign Object Detection (FOD)

6.2.2. Automotive

6.2.2.1. Automatic - Inline Integrated Solution (Robotics/Automatic)
6.2.2.2. Manual

6.2.3. Oil and Gas

6.2.3.1. Weld Inspection
6.2.3.2. Corrosion (Integrity)
6.2.3.3. Others (Valve Checks, Parts, and Flanges)

6.2.4. Power and Energy

6.2.4.1. Weld Inspection
6.2.4.2. Corrosion (Integrity)
6.2.4.3. Others (Valve Checks, Parts, and Flanges)

6.2.5. Security

6.2.5.1. Border Patrol
6.2.5.2. Travel (Airport or Government Buildings)

6.2.6. Explosive Ordnance Disposal and Improvised Explosive Device

6.2.6.1. Explosive Ordnance Disposal (EOD)/Weapons of Mass Destruction (WMD)

6.2.7. Electronics and Semiconductors

6.2.7.1. Automatic - Inline Integrated Solution (Robotics/Automatic)
6.2.7.2. Manual

6.2.8. Food and Drugs

6.2.8.1. Automatic - Inline Integrated Solution (Robotics/Automatic)

6.2.9. Transportation Infrastructure

6.2.9.1. Structural Integrity (Bridges)

6.2.10. Construction

6.2.10.1. Concrete

6.2.11. Marine

6.2.11.1. Casting Manufacturing
6.2.11.2. Assembly
6.2.11.3. Maintenance, Repair, and Overhaul (MRO)
6.2.11.4. Weld Inspection

6.2.12. Manufacturing

6.2.12.1. Automatic - Inline Integrated Solution (Robotics/Automatic)
6.2.12.2. Assembly

6.2.13. Heavy Industries

6.2.13.1. Automatic - Inline Integrated Solution (Robotics/Automatic)

6.2.14. Others

6.2.14.1. Railways
6.2.14.2. Pulp and Paper
6.2.14.3. Academic Research and Development
6.2.14.4. Mining
6.2.14.5. Archeological Investigations

Chapter 7. Industrial Computed Radiography Market Segmentation 3: Regional Estimates & Trend Analysis

7.1. North America

7.1.1. North America Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by Component, 2023-2031
7.1.2. North America Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by Application, 2023-2031
7.1.3. North America Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by country, 2023-2031

7.2. Europe

7.2.1. Europe Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by Component, 2023-2031
7.2.2. Europe Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by Application, 2023-2031
7.2.3. Europe Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by country, 2023-2031

7.3. Asia Pacific

7.3.1. Asia Pacific Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by Component, 2023-2031
7.3.2. Asia Pacific Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by Application, 2023-2031
7.3.3. Asia Pacific Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by country, 2023-2031

7.4. Latin America

7.4.1. Latin America Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by Component, 2023-2031
7.4.2. Latin America Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by Application, 2023-2031
7.4.3. Latin America Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by country, 2023-2031

7.5. Middle East & Africa

7.5.1. Middle East & Africa Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by Component, 2023-2031
7.5.2. Middle East & Africa Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by Application, 2023-2031
7.5.3. Middle East & Africa Industrial Computed Radiography Market Revenue (US$ Million) Estimates and Forecasts by country, 2023-2031

Chapter 8. Competitive Landscape

8.1. Major Mergers and Acquisitions/Strategic Alliances

8.2. Company Profiles


8.2.1. Carestream Health
8.2.2. DÜRR NDT GmbH & Co. KG
8.2.3. FUJIFILM Holdings America Corporation
8.2.4. L3Harris Technologies, Inc.
8.2.5. MQS Technologies Pvt. Ltd.
8.2.6. Rigaku Corporation
8.2.7. Virtual Media Integration
8.2.8. Way gate Technologies (Baker Hughes Company)
8.2.9. Other Prominent Players

Research Design and Approach

This study employed a multi-step, mixed-method research approach that integrates:

  • Secondary research
  • Primary research
  • Data triangulation
  • Hybrid top-down and bottom-up modelling
  • Forecasting and scenario analysis

This approach ensures a balanced and validated understanding of both macro- and micro-level market factors influencing the market.

Secondary Research

Secondary research for this study involved the collection, review, and analysis of publicly available and paid data sources to build the initial fact base, understand historical market behaviour, identify data gaps, and refine the hypotheses for primary research.

Sources Consulted

Secondary data for the market study was gathered from multiple credible sources, including:

  • Government databases, regulatory bodies, and public institutions
  • International organizations (WHO, OECD, IMF, World Bank, etc.)
  • Commercial and paid databases
  • Industry associations, trade publications, and technical journals
  • Company annual reports, investor presentations, press releases, and SEC filings
  • Academic research papers, patents, and scientific literature
  • Previous market research publications and syndicated reports

These sources were used to compile historical data, market volumes/prices, industry trends, technological developments, and competitive insights.

Secondary Research

Primary Research

Primary research was conducted to validate secondary data, understand real-time market dynamics, capture price points and adoption trends, and verify the assumptions used in the market modelling.

Stakeholders Interviewed

Primary interviews for this study involved:

  • Manufacturers and suppliers in the market value chain
  • Distributors, channel partners, and integrators
  • End-users / customers (e.g., hospitals, labs, enterprises, consumers, etc., depending on the market)
  • Industry experts, technology specialists, consultants, and regulatory professionals
  • Senior executives (CEOs, CTOs, VPs, Directors) and product managers

Interview Process

Interviews were conducted via:

  • Structured and semi-structured questionnaires
  • Telephonic and video interactions
  • Email correspondences
  • Expert consultation sessions

Primary insights were incorporated into demand modelling, pricing analysis, technology evaluation, and market share estimation.

Data Processing, Normalization, and Validation

All collected data were processed and normalized to ensure consistency and comparability across regions and time frames.

The data validation process included:

  • Standardization of units (currency conversions, volume units, inflation adjustments)
  • Cross-verification of data points across multiple secondary sources
  • Normalization of inconsistent datasets
  • Identification and resolution of data gaps
  • Outlier detection and removal through algorithmic and manual checks
  • Plausibility and coherence checks across segments and geographies

This ensured that the dataset used for modelling was clean, robust, and reliable.

Market Size Estimation and Data Triangulation

Bottom-Up Approach

The bottom-up approach involved aggregating segment-level data, such as:

  • Company revenues
  • Product-level sales
  • Installed base/usage volumes
  • Adoption and penetration rates
  • Pricing analysis

This method was primarily used when detailed micro-level market data were available.

Bottom Up Approach

Top-Down Approach

The top-down approach used macro-level indicators:

  • Parent market benchmarks
  • Global/regional industry trends
  • Economic indicators (GDP, demographics, spending patterns)
  • Penetration and usage ratios

This approach was used for segments where granular data were limited or inconsistent.

Hybrid Triangulation Approach

To ensure accuracy, a triangulated hybrid model was used. This included:

  • Reconciling top-down and bottom-up estimates
  • Cross-checking revenues, volumes, and pricing assumptions
  • Incorporating expert insights to validate segment splits and adoption rates

This multi-angle validation yielded the final market size.

Forecasting Framework and Scenario Modelling

Market forecasts were developed using a combination of time-series modelling, adoption curve analysis, and driver-based forecasting tools.

Forecasting Methods

  • Time-series modelling
  • S-curve and diffusion models (for emerging technologies)
  • Driver-based forecasting (GDP, disposable income, adoption rates, regulatory changes)
  • Price elasticity models
  • Market maturity and lifecycle-based projections

Scenario Analysis

Given inherent uncertainties, three scenarios were constructed:

  • Base-Case Scenario: Expected trajectory under current conditions
  • Optimistic Scenario: High adoption, favourable regulation, strong economic tailwinds
  • Conservative Scenario: Slow adoption, regulatory delays, economic constraints

Sensitivity testing was conducted on key variables, including pricing, demand elasticity, and regional adoption.

Name field cannot be blank!
Email field cannot be blank!(Use email format)
Designation field cannot be blank!
Company field cannot be blank!
Contact No field cannot be blank!
Message field cannot be blank!
5121
Security Code field cannot be blank!

Frequently Asked Questions

Industrial Computed Radiography Market Size is valued at 59.29 million in 2023 and is predicted to reach 67.11 million by the year 2031

Industrial Computed Radiography Market expected to grow at a 1.62% CAGR during the forecast period for 2024-2031

Carestream Health, DÜRR NDT GmbH & Co. KG, FUJIFILM Holdings America Corporation, L3Harris Technologies, Inc, MQS Technologies Pvt. Lt, Rigakuku Corpo
Get Sample Report Enquiry Before Buying