AI in Government and Public Services Market Size, Share & Trends Analysis Report By Type (Machine Learning, Natural Language Processing (NLP), Computer Vision, Robotic Process Automation (RPA), Expert Systems, Others), By Application, By Deployment Mode. By End-User, By Region, And By Segment Forecasts, 2025-2034

Report Id: 2749 Pages: 180 Last Updated: 23 June 2025 Format: PDF / PPT / Excel / Power BI
Share With : linkedin twitter facebook

Segmentation of AI in Government and Public Services Market-

AI in Government and Public Services Market By Type-

  • Machine Learning
  • Natural Language Processing (NLP)
  • Computer Vision
  • Robotic Process Automation (RPA)
  • Expert Systems
  • Others

ai in govt

AI in Government and Public Services Market By Application-

  • Administrative Services
  • Healthcare
  • Law Enforcement and Public Safety
  • Transportation and Urban Planning
  • Social Services
  • Environmental Management
  • Tax and Revenue Management
  • Defense and National Security
  • Education
  • Others

AI in Government and Public Services Market By Deployment Mode-

  • Cloud-based
  • On-premises

AI in Government and Public Services Market By End-User-

  • Government Agencies
  • Public Services Organizations

AI in Government and Public Services Market By Region-

North America-

  • The US
  • Canada

Europe-

  • Germany
  • The UK
  • France
  • Italy
  • Spain
  • Rest of Europe

Asia-Pacific-

  • China
  • Japan
  • India
  • South Korea
  • South East Asia
  • Rest of Asia Pacific

Latin America-

  • Brazil
  • Mexico
  • Argentina
  • Rest of Latin America

 Middle East & Africa-

  • GCC Countries
  • South Africa
  • Rest of the Middle East and Africa

Chapter 1. Methodology and Scope
1.1. Research Methodology
1.2. Research Scope & Assumptions

Chapter 2. Executive Summary

Chapter 3. Global AI in Government and Public Services Market Snapshot

Chapter 4. Global AI in Government and Public Services Market Variables, Trends & Scope
4.1. Market Segmentation & Scope
4.2. Drivers
4.3. Challenges
4.4. Trends
4.5. Investment and Funding Analysis
4.6. Industry Analysis – Porter’s Five Forces Analysis
4.7. Competitive Landscape & Market Share Analysis
4.8. Impact of Covid-19 Analysis

Chapter 5. Market Segmentation 1: by Type Estimates & Trend Analysis
5.1. by Type & Market Share, 2024 & 2034
5.2. Market Size (Value (US$ Mn)) & Forecasts and Trend Analyses, 2021 to 2034 for the following by Type:

5.2.1. Machine Learning
5.2.2. Natural Language Processing (NLP)
5.2.3. Computer Vision
5.2.4. Robotic Process Automation (RPA)
5.2.5. Expert Systems
5.2.6. Others

Chapter 6. Market Segmentation 2: by Application Estimates & Trend Analysis
6.1. by Application & Market Share, 2024 & 2034
6.2. Market Size (Value (US$ Mn)) & Forecasts and Trend Analyses, 2021 to 2034 for the following by Application:

6.2.1. Administrative Services
6.2.2. Healthcare
6.2.3. Law Enforcement and Public Safety
6.2.4. Transportation and Urban Planning
6.2.5. Social Services
6.2.6. Environmental Management
6.2.7. Tax and Revenue Management
6.2.8. Defense and National Security
6.2.9. Education
6.2.10. Others

Chapter 7. Market Segmentation 3: by Deployment Mode Estimates & Trend Analysis
7.1. by Deployment Mode & Market Share, 2024 & 2034
7.2. Market Size (Value (US$ Mn)) & Forecasts and Trend Analyses, 2021 to 2034 for the following by Deployment Mode:

7.2.1. Cloud-based
7.2.2. On-premises

Chapter 8. Market Segmentation 4: by End Users Estimates & Trend Analysis
8.1. by End Users & Market Share, 2024 & 2034
8.2. Market Size (Value (US$ Mn)) & Forecasts and Trend Analyses, 2021 to 2034 for the following by End Users:

8.2.1. Government Agencies
8.2.2. Public Services Organizations

Chapter 9. AI in Government and Public Services Market Segmentation 5: Regional Estimates & Trend Analysis

9.1. North America
9.1.1. North America AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Type, 2021-2034
9.1.2. North America AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Application, 2021-2034
9.1.3. North America AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Deployment Mode, 2021-2034
9.1.4. North America AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by End Users, 2021-2034
9.1.5. North America AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by country, 2021-2034

9.2. Europe
9.2.1. Europe AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Type, 2021-2034
9.2.2. Europe AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Application, 2021-2034
9.2.3. Europe AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Deployment Mode, 2021-2034
9.2.4. Europe AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by End Users, 2021-2034
9.2.5. Europe AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by country, 2021-2034

9.3. Asia Pacific
9.3.1. Asia Pacific AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Type, 2021-2034
9.3.2. Asia Pacific AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Application, 2021-2034
9.3.3. Asia-Pacific AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Deployment Mode, 2021-2034
9.3.4. Asia-Pacific AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by End Users, 2021-2034
9.3.5. Asia Pacific AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by country, 2021-2034

9.4. Latin America
9.4.1. Latin America AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Type, 2021-2034
9.4.2. Latin America AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Application, 2021-2034
9.4.3. Latin America AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Deployment Mode, 2021-2034
9.4.4. Latin America AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by End Users, 2021-2034
9.4.5. Latin America AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by country, 2021-2034

9.5. Middle East & Africa
9.5.1. Middle East & Africa AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Type, 2021-2034
9.5.2. Middle East & Africa AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Application, 2021-2034
9.5.3. Middle East & Africa AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by Deployment Mode, 2021-2034
9.5.4. Middle East & Africa AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by End Users, 2021-2034
9.5.5. Middle East & Africa AI in Government and Public Services Market Revenue (US$ Million) Estimates and Forecasts by country, 2021-2034

Chapter 10. Competitive Landscape
10.1. Major Mergers and Acquisitions/Strategic Alliances
10.2. Company Profiles

10.2.1. IBM Corporation
10.2.2. Microsoft Corporation
10.2.3. Google LLC
10.2.4. Amazon Web Services, Inc.
10.2.5. Accenture PLC
10.2.6. Deloitte Touche Tohmatsu Limited
10.2.7. SAP SE
10.2.8. Oracle Corporation
10.2.9. NVIDIA Corporation
10.2.10. Intel Corporation
10.2.11. Adobe Inc.
10.2.12. Palantir Technologies Inc.
10.2.13. OpenText Corporation
10.2.14. SAS Institute Inc.
10.2.15. Cognizant Technology Solutions Corporation
10.2.16. Genpact Limited
10.2.17. Infosys Limited
10.2.18. Capgemini SE
10.2.19. TCS (Tata Consultancy Services) Limited
10.2.20. CGI Inc.
10.2.21. Wipro Limited
10.2.22. DXC Technology Company
10.2.23. PwC (PricewaterhouseCoopers) LLP
10.2.24. KPMG International Cooperative
10.2.25. HCL Technologies Limited
10.2.26. Other Prominent Players

Research Design and Approach

This study employed a multi-step, mixed-method research approach that integrates:

  • Secondary research
  • Primary research
  • Data triangulation
  • Hybrid top-down and bottom-up modelling
  • Forecasting and scenario analysis

This approach ensures a balanced and validated understanding of both macro- and micro-level market factors influencing the market.

Secondary Research

Secondary research for this study involved the collection, review, and analysis of publicly available and paid data sources to build the initial fact base, understand historical market behaviour, identify data gaps, and refine the hypotheses for primary research.

Sources Consulted

Secondary data for the market study was gathered from multiple credible sources, including:

  • Government databases, regulatory bodies, and public institutions
  • International organizations (WHO, OECD, IMF, World Bank, etc.)
  • Commercial and paid databases
  • Industry associations, trade publications, and technical journals
  • Company annual reports, investor presentations, press releases, and SEC filings
  • Academic research papers, patents, and scientific literature
  • Previous market research publications and syndicated reports

These sources were used to compile historical data, market volumes/prices, industry trends, technological developments, and competitive insights.

Secondary Research

Primary Research

Primary research was conducted to validate secondary data, understand real-time market dynamics, capture price points and adoption trends, and verify the assumptions used in the market modelling.

Stakeholders Interviewed

Primary interviews for this study involved:

  • Manufacturers and suppliers in the market value chain
  • Distributors, channel partners, and integrators
  • End-users / customers (e.g., hospitals, labs, enterprises, consumers, etc., depending on the market)
  • Industry experts, technology specialists, consultants, and regulatory professionals
  • Senior executives (CEOs, CTOs, VPs, Directors) and product managers

Interview Process

Interviews were conducted via:

  • Structured and semi-structured questionnaires
  • Telephonic and video interactions
  • Email correspondences
  • Expert consultation sessions

Primary insights were incorporated into demand modelling, pricing analysis, technology evaluation, and market share estimation.

Data Processing, Normalization, and Validation

All collected data were processed and normalized to ensure consistency and comparability across regions and time frames.

The data validation process included:

  • Standardization of units (currency conversions, volume units, inflation adjustments)
  • Cross-verification of data points across multiple secondary sources
  • Normalization of inconsistent datasets
  • Identification and resolution of data gaps
  • Outlier detection and removal through algorithmic and manual checks
  • Plausibility and coherence checks across segments and geographies

This ensured that the dataset used for modelling was clean, robust, and reliable.

Market Size Estimation and Data Triangulation

Bottom-Up Approach

The bottom-up approach involved aggregating segment-level data, such as:

  • Company revenues
  • Product-level sales
  • Installed base/usage volumes
  • Adoption and penetration rates
  • Pricing analysis

This method was primarily used when detailed micro-level market data were available.

Bottom Up Approach

Top-Down Approach

The top-down approach used macro-level indicators:

  • Parent market benchmarks
  • Global/regional industry trends
  • Economic indicators (GDP, demographics, spending patterns)
  • Penetration and usage ratios

This approach was used for segments where granular data were limited or inconsistent.

Hybrid Triangulation Approach

To ensure accuracy, a triangulated hybrid model was used. This included:

  • Reconciling top-down and bottom-up estimates
  • Cross-checking revenues, volumes, and pricing assumptions
  • Incorporating expert insights to validate segment splits and adoption rates

This multi-angle validation yielded the final market size.

Forecasting Framework and Scenario Modelling

Market forecasts were developed using a combination of time-series modelling, adoption curve analysis, and driver-based forecasting tools.

Forecasting Methods

  • Time-series modelling
  • S-curve and diffusion models (for emerging technologies)
  • Driver-based forecasting (GDP, disposable income, adoption rates, regulatory changes)
  • Price elasticity models
  • Market maturity and lifecycle-based projections

Scenario Analysis

Given inherent uncertainties, three scenarios were constructed:

  • Base-Case Scenario: Expected trajectory under current conditions
  • Optimistic Scenario: High adoption, favourable regulation, strong economic tailwinds
  • Conservative Scenario: Slow adoption, regulatory delays, economic constraints

Sensitivity testing was conducted on key variables, including pricing, demand elasticity, and regional adoption.

Name field cannot be blank!
Email field cannot be blank!(Use email format)
Designation field cannot be blank!
Company field cannot be blank!
Contact No field cannot be blank!
Message field cannot be blank!
7423
Security Code field cannot be blank!

Frequently Asked Questions

AI in Government and Public Services Market Size is valued at USD 21.8 Bn in 2024 and is predicted to reach USD 95.0 Bn by the year 2034

AI in Government and Public Services Market is expected to grow at a 16.0% CAGR during the forecast period for 2025-2034

IBM Corporation, Microsoft Corporation, Amazon Web Services (AWS), Google LLC, Accenture PLC, Palantir Technologies Inc., SAS Institute Inc., Oracle C

Type, Application, End-User and Deployment Mode are the key segments of the AI in Government and Public Services Market.

North America region is leading the AI in Government and Public Services Market.
Get Sample Report Enquiry Before Buying